Statistical Inference for Structural Health Monitoring

ثبت نشده
چکیده

This COST Action enhances the benefit of Structural Health Monitoring (SHM) by novel utilization of applied decision analysis on how to assess the value of SHM even before it is implemented. This improves decision basis for design, operation and life-cycle integrity management of structures and facilitates more cost efficient, reliable and safe strategies for maintaining and developing the built environment to the benefit of society. SHM is increasingly applied for collecting information on loads and aggressive environments acting on structures, structural performances, deterioration processes and changes in the use of structures. However, there is an urgent need to establish a better understanding of the value of SHM before its implementation, together with practically applicable methods and tools for its quantification. This Action thus aims to develop and describe a theoretical framework, together with methods, tools, guidelines, examples and educational activities, for the quantification of the value of SHM. The COST Action will be conducted with the support of the Joint Committee on Structural Safety (JCSS). The networks of researchers and industries established during COST Actions TU0601, C26, E55 and E24, the EU FP7 project IRIS, the Marie Curie Network SmartEn and the JCSS will ensure visibility, impact and dissemination. 8.3.2.4. EBONSI Participant: Qinghua Zhang. Type: ANR-NSFC Objectif: Extended Block-Oriented Nonlinear System Identification Duration: from April 2011 to March 2014. Coordinator: Qinghua Zhang Partner: CRAN, Laboratory of Industrial Process Monitoring and Optimization of Peking University. Inria contact: Qinghua Zhang Abstract: The main idea of block-oriented nonlinear system identification is to model a complex system with interconnected simple blocks. Such models can cover a large number of industrial applications, and are yet simple enough for theoretic studies. The objectives of the EBONSI project are to extend classical block-oriented nonlinear models to new model structures motivated by industrial applications, and to relax some traditional restrictions on experimental conditions. This is an international project jointly funded by the French Agence Nationale de la Recherche (ANR) and the Chinese National Natural Science Foundation (NSFC) .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A case study for application of fuzzy inference and data mining in structural health monitoring

In this study, a system for monitoring the structural health of bridge deck and predicting various possible damages to this section was designed based on measuring the temperature and humidity with the use of wireless sensor networks, and then it was implemented and investigated. A scaled model of a conventional medium sized bridge (length of 50 meters, height of 10 meters, and with 2 piers) wa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016